

NMR of Solids

J. Fraissard

Université P. et M. Curie, Paris Ecole Supérieure Physique et Chimie Industrielle Laboratoire « Physique et Etude de Matériaux»

Generalities

I = nuclear spin = quantum number

A Atomic weight	00	ld	even			
Z Atomic number	even	odd	odd	even		
I	1/2, 3/2, 5/2,		1, 2, 3,	0		

I= 1/2 : ¹H, ³He, ¹³C, ¹⁵N, ²⁹Si, ³¹P, ¹⁰⁹Ag, ¹²⁹Xe, ¹⁹⁵Pt, ... 3/2 : ⁷Li, ⁹Be, ¹³¹Xe,

1 : 14 N, D(2 H),...

5/2 : ¹⁷O, ²⁷Al,

 $\vec{I} = \text{dimensionless vector}$ $\mathcal{M} = \hbar \vec{I} = \text{angular momentum}$ $\vec{\mu} = \text{magnetic moment} = \gamma \hbar \vec{I}$ $\gamma = \text{gyromagnetic ratio}$

The Periodic Table of the Elements

1																	2
Н											Не						
1.00794		l = 1/2											4.003				
3	4											5	6	7	8	-9	10
Li	Be	Quadrupolar B C N									0	F	Ne				
Lithium 6.941	Beryllium 9.012182											Boran 10.811	Carbon 12 0107	Ninogen 14.00674	Oxygen 15 9994	Fluorine 18 9984032	Neon 20.1797
11	12	1	13 14 15 16 17 1										18				
Na	Mg											AL	Si	Р	S	CI	Ar
Sodium	Magnesium		Aluminum Silicon Phosphorus Sulfur Chlorine Argon								Argon						
19	24.3030	21	22	23	24	25	26	27	28	29	30	31	32	33	32.000	35.4527	39.940
IZ IZ	Co	Se	T	V	C.	Mn	Eo	Co	NI	Cn	In	Co	Co	4.0	So	Du	Kr
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Ansenic	Selenium	Bromine	Krypton
39.0983	40.078	44.955910	47.867	50.9415	51.9961	54.938049	55.845	58.933200	58.6934	63.546	65.39	69.723	72.61	74.92160	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
Rubidium 85,4678	Strontium 87.62	Yttrium 88,90585	Zirconium 91.224	Niobium 92,90638	Molybdenum 95,94	Technetium (98)	Ruthenium 101.07	Rhodium 102,90550	Palladium 106.42	Silver 107,8682	Cadmium 112.411	Indium 114,818	Tin 118,710	Antimony 121,760	Tellurium 127.60	Iodine 126.90447	Xenon 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Cesium 132 90545	Bariam	Lanthanum	Hafnium 178.49	Tantalum	Tungsten 183.84	Rhenium 186-207	Osmium	Iridium 192 217	Platinum 195.078	Gold	Mercury 200 59	Thallium 204 3833	Lead	Bismuth	Polonium (209)	Astatine (210)	Radon (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114	20013/00/30	(ad))	(2.10)	(222)
Fr	Ra	Ac	Rf	Dh	Sa	Bh	Hs	Mt		(10.597.50a)	(1) Contraction	1963 (ABTELN	25.2.ME/167				
Francium	Radium	Actinium	Ratherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium									
(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Vtterbaum.	Lutetium
140.116	140.90765	144.24	(145)	150.36	151.964	157.25	158.92534	162.50	164.93032	167.26	168.93421	173.04	174.967
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
232.0381	231.03588	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Zeeman interaction

Zeeman interaction : \hat{H}_Z

The energy of a magnetic dipole μ in a magnetic field with induction B_0 along the axis OZ is

$$E = -\mu \cdot B_0 = -\gamma h B_0 \cdot I = -\gamma h B_0 I_z$$

The corresponding Hamiltonian operator is of the same form:

 $\hat{H}_Z = -\gamma \hbar B_0 \hat{I}_Z$

Being proportional to \hat{I}_Z , it allows 2I + I eigenvalues. There are therefore 2I + I accessible energy levels

$$E_m = -\gamma \hbar B_0 m$$
 (m = -I,-I+1, ..., I)

The energy gap ΔE between two consecutive levels being constant, proportional to B_0 ,

$$\Delta E = \gamma \hbar B_0$$

we observe a single-line spectrum at frequency v

$$hv = \Delta E = \gamma \hbar B_{\theta}$$
$$\omega_0 = \gamma B_{\theta}$$

where ω_0 is the angular frequency.

SPIN 1/2

$$\vec{\mu} = \gamma \hbar \vec{I}$$

$$E = -\vec{\mu} \cdot \vec{B_0} = -\gamma \hbar \vec{B_0} \cdot \vec{I} = -\gamma \hbar B_0 I_z$$

$$E_m = -\gamma \hbar B_0 m$$
 (m = -1/2, +1/2))

 $\Delta E = h v_0 = \gamma h B_0$

 $2\pi v_0 = \omega_0 = \gamma B_0$

SPIN > 1/2

 $I \rightarrow 2I + 1 \text{ energy levels} \rightarrow 2I \text{ intervals}$ $\Delta E = (2I \gamma h B_0) / 2I = \gamma h B_0 = h v_0$ $2\pi v_0 = \omega_0 = \gamma B_0$

Examples spin I>1/2

 $\vec{M} = \hbar \vec{I} = angular momentum$

 $M_Z = I h$, (I-1) h,...., (I-n) h,...., -I h

Spin I = 1 (D, ¹⁴N, ...)

The three equidistant Zeeman energy levels of an isolated 1 spin

Spin I = 3/2 (7Li, ¹³¹Xe, ...)

Populations of levels

Distribution of the spins ½ assuming that we have two millions of spins. Of course generally there are more numerous

Normal polarization

Hyperpolarization

The torque exerted on a magnetic moment $\overrightarrow{\mu}$ by a magnetic field is

 $\vec{C} = \vec{\mu} \wedge \vec{B_0}$

It equals the rate of change of angular momentum

 $\mathbf{\hat{h}} \, \mathbf{d}\mathbf{I}/\mathbf{d}t = \mathbf{\hat{C}} = \mathbf{\hat{\mu}} \wedge \mathbf{\hat{B}_0}$ $\mathbf{d}\mathbf{\hat{\mu}}/\mathbf{d}t = \mathbf{\hat{h}} \gamma \, \mathbf{d}\mathbf{\hat{I}}/\mathbf{d}t = \gamma \, \mathbf{\hat{\mu}} \wedge \mathbf{\hat{B}_0}$

 \Rightarrow Precession of $\overrightarrow{\mu}$ around \mathbf{B}_0

Period of precession:

 $T_0 = 2\pi r / d\mu/dt$ with $r = \mu \sin \theta$ and $d\mu/dt = \gamma \mu B_0 \sin \theta$

 $\Rightarrow T_0 = 2\pi h B_0 \implies \omega_0 = \gamma B_0 \text{ Larmor frequency}$

Precession of the magnetic moment around the magnetic field Bo

Orientation and precession of nuclear spins (I = 1/2) at thermal equilibrium in a stationary magnetic field Bo that defines the z-axis. In reality, the angle between the vectors and the z-axis is much smaller than is shown for illustrative purposes

• Spectrometer

Schematic diagram indicating the basic components of an NMR spectrometer

 $\omega_0 = \gamma B_0$. Generally ω_0 is fixed and we scan B_0 .

Signal intensity proportional to N $_{(+1/2)}$ - N $_{(-1/2)}$ (very small). For example for protons, 300K, B₀=0,95 tesla, N $_{(+1/2)}/N$ $_{(-1/2)}$ =1.0000066.

Phenomenon of saturation due to a strong absorption: N $_{(+1/2)}$ - N $_{(-1/2)}$ \Rightarrow S =0

Superconducting magnet

NMR experiment

Decomposition of the radiofrequency field in two components with two opposite angular velocity.

Interaction with the radiofrequency Field BRF

A radiofrequency field \overrightarrow{B}_{RF} is applied $\perp B_0$ along OX of the lab. Frame.

 $B_{RF} = 2 B_1 \cos \omega_1 t$

This rf field can be split into two rotating components of fixed amplitude and with angular velocities of $\pm \omega'$. The component with the velocity $-\omega'$ has a negligible effect.

Pulsed NMR

A high power radiofrequency field B_1 is applied to the sample for a short time (about microsecond). During this pulse the magnetization rotates in the rotating frame according to the equation

 $ω_1 = γ B_1$

at a rate proportional to the RF intensity

Pulsed NMR

This method does not give the NMR signal directly. A high power B_{RF} is applied to the sample for about one microsecond. During this pulse the magnetization rotates in the rotating frame according to equation

 $\omega_1 = \gamma \mathbf{B}_1$

at a rate proportional to the RF intensity.

$$\theta = \omega_1 t_p = \gamma B_1 t_p$$

We will use very often $\theta = \pi/2$ and $\theta = \pi$

If $\theta = \pi/2$, M_0^+ will be directed along Y'. It then induces a current in the receiver coil which is in the XOY plane. This current is at the origin of the NMR signal. After this period the system evolves under the effect of relaxation.

Pulsed NMR

This method does not give the NMR signal directly. A high power B_{RF} is applied to the sample for about one microsecond. During this pulse the magnetization rotates in the rotating frame according to equation

 $\omega_1 = \gamma B_1$

at a rate proportional to the RF intensity.

 $\theta = \omega_1 t_p = \gamma B_1 t_p$

We will use very often $\theta = \pi/2$ and $\theta = \pi$

If $\theta = \pi/2$, M_0^+ will be directed along Y'. It then induces a current in the receiver coil which is in the XOY plane. This current is at the origin of the NMR signal. After this period the system evolves under the effect of relaxation.

Generally the system contains several nuclei of the same species that differ in Larmor frequency because of various perturbations (chemical shifts, spin-spin coupling, etc.). Then they are precessing at a frequency different from that of the rotating frame, and interference effects can occur (beatings).

Fourier transformation of an FID which decays exponentially with a time constant of T_2^* s gives rise to a Lorentzian lineshape whose width at half-height is $1/\pi T_2^*$ Hz

Relaxation

The system evolves under two relaxation mechanisms:

- For a set of spins coupled by interactions, as in a solid, the system can tend very rapidly towards an internal quasiequilibrium with a time constant, T_2 , named spin-spin relaxation time. During T_2 there is disappearance of the transversal magnetization by dispersion of the spins in the XOY plane.

- For such a set of spins in contact with the lattice, there is a **spin-lattice relaxation** characterized by the time T_1 , and then restoration of the magnetization M_0 along B_0 .

Generally, and specially for solids, T2 << T1

Bloch's equations: $dM_Z/dt = -(M_Z-M_0)/T_1$

 $dM_X/dt = -M_X/T_2$ $dM_Y/dt = -M_Y/T_2$

The magnitude of the relaxation time depends highly on:

- the type of nuclei (nuclei with spin 1/2 and low magnetogyric ratio have usually long relaxation time whereas nuclei with spin>1/2 have very short relaxation time)

other factors like the physical state (solid or liquid state), the viscosity of the solution, the temperature ... etc.
In other words the relaxation time depends on the motion of the molecule.

Definitions:

The correlation time $-\tau c$ (Tau-c): represents the time it takes for a molecule to reorient by 1 degree ("tumbling time"). The spectral density - J(w): describes the ranges of frequency motion that are present. Not all molecules tumbles at a unique rate: molecules tumbles, collide, change direction... at a range of rates up to the maximum rate of (1/ τc).

There are several relaxation mechanisms:

Interaction	Range of interaction (Hz)	relevant parameters
1- Dipolar coupling	10 ⁴ - 10 ⁵	 abundance of magnetically active nuclei size of the magnetogyric ratio
2- Quadrupolar coupling	10 ⁶ - 10 ⁹	 size of quadrupolar coupling constant electric field gradient at the nucleus
3- Paramagnetic	10 ⁷ -10 ⁸	concentration of paramagnetic impurities
4- Scalar coupling	10 - 10 ³	size of the scalar coupling constants
5-Chemical Shift Anisotropy (CSA)	10 - 10 ⁴	 size of the chemical shift anisotropy symmetry at the nuclear site
6- Spin rotation		

Relaxation spin-lattice: transfert of energy from the system of spins to an acceptor of the lattice: rotations, translations, vibrations fluctuating in the domain of larmor frequencies

Relaxation spin-spin: destruction of the component MXY after a pulse.

Liquids: generally $T_1 = T_2$ Solids: Often $T_1 >> T_2$

Variation of T₁ and T₂ against 1/T. Generally: In liquids T₁ =T₂; in solids T₁ >>T₂

Measurement of T₁ with 180°, τ , 90° sequences

a) M is inverted by a 180° pulse at time 0; b) After a time τ a 90° rotates M to the Y' (or -Y') axis. c) the amplitude of the FID after the 90° pulse, which is proportional to the amplitude of M at time τ , is plotted as a function of τ .

Hahn Spin-echo

Hahn spin-echo experiment

20

Hahn spin-echo experiment

The distribution of the spin in the X'OY' plan after a pulse $\pi/2$ is due to the spin-spin interactions but also to the inhomogeneity of B₀ The spin-echo experiment overcomes the inhomogeneity problem. In addition it is used for several applications of NMR.

90°, τ , 180° sequence, and observation at time 2τ of a free induction "echo".

Spin-echo experiment

Spin-echo experiment

Figure 2.5. A typical Hahn spin-echo experiment, consisting of six 90°, τ , 180° sequences, with τ varying from 0.1–1 sec. Note that the amplitude of the echo decreases as τ increases. In this experiment the echoes are positive, rather than negative as expected, since a diode detector was used, which measures only amplitude, not phase of the signal. (See Chapter 3 for further details on detectors.)

Spin-lattice T1 in NaBH4 vs 1/T showing a phase transition at about 190°K

Relaxation rate R1 *versus* T-1. A- SBA-80: spin-rotation;
B- Zeolite Omega:spin-rotation + dipolar contribution (cut-off 77K)
C- Zeolite ZSM5: spin-rotation + dipolar contribution (cut-off 110K);
D- Zeolite Rho: two dipolar contributions

• End of the first lecture

Ethyl acetate

We consider a system of three axis rotating about B_0 in the same direction in which the nuclear moments process (rotating frame) with a velocity ω '. The classical relationship

$d\mu/dt = \gamma \mu \wedge B_0$

is valid provided the Coriolis force is added:

 $(d\mu/dt)_{LF} = (d\mu/dt)_{RF} + \vec{\omega}' \wedge \vec{\mu}$

$$(d\mu/dt)_{RF} = \gamma \mu \wedge B_0 - \omega' \wedge \mu$$

 $= \gamma \overrightarrow{\mu} \wedge [\overrightarrow{\mathbf{B}_0} - \overrightarrow{\omega'}/\gamma]$

 $(d\mu/dt)_{RF} = \gamma \mu \wedge B_e$ with $B_e = B_0 - \omega'/\gamma$

If
$$\omega' = \omega_0 \Rightarrow B_e = 0$$

In the rotating frame $(d\mu/dt)_{RF} = 0$ and μ is fixed.

So, with the addition of B_1 along OX', rotating with a velocity ω_1 , the previous equation

$$(d\mu/dt)_{RF} = \gamma \mu \wedge B_e$$
 with $B_e = B_0 - \omega'/\gamma$

characterizing the variation of $(d\mu/dt)_{RF}$ in a frame rotating with a velocity ω ' keep the same form but with

 $\mathbf{B}_{\mathbf{e}}^{*} = (\mathbf{B}_{\mathbf{0}} - \boldsymbol{\omega}^{*} / \boldsymbol{\gamma}) \cdot \mathbf{\vec{k}} + \mathbf{B}_{\mathbf{1}} \cdot \mathbf{\vec{i}}^{*}$

$$B_{e} = [(B_{0} - \omega^{*}/\gamma)^{2} + B_{1}^{2}]^{1/2}$$

If $\omega' = \omega_0 \implies B_e = B_1$

In the rotating frame with a velocity ω_0 there is a precession of the spins around OX' (B₁) with a velocity ω_1 .

Spin-echo experiment

Interactions of nuclear spins in a solid

 $\hat{H}_Z >>$ other interactions

Very often some effects are masked by the others. For example $\hat{H}_D >> \hat{H}_J$

 $\hat{H}_{X} = K$ (spin factor) [space factor $f(\theta)$]

 θ = angle between an axis of the system and B_0