

NMR of Solids

J. Fraissard

Université P. et M. Curie, Paris Ecole Supérieure Physique et Chimie Industrielle Laboratoire « Physique et Etude de Matériaux»

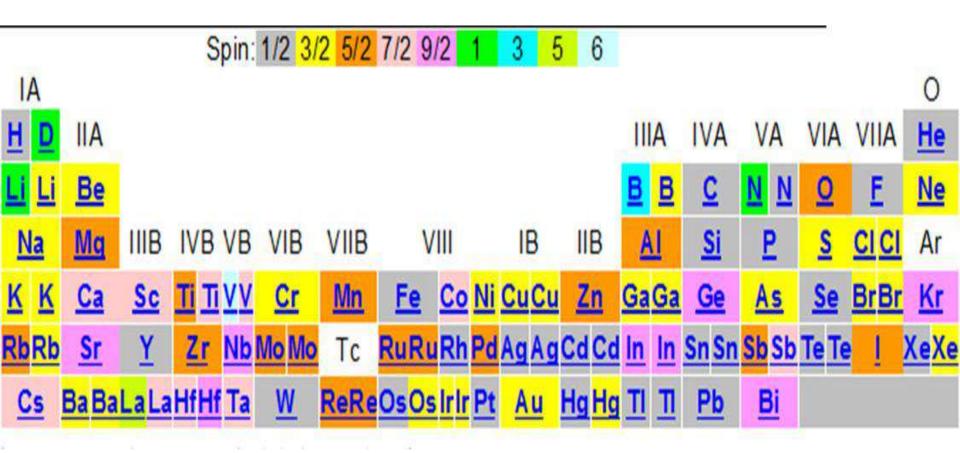
Generalities

I = nuclear spin = quantum number

A Atomic weight	00	ld	even				
Z Atomic number	even	odd	odd	even			
I	1/2, 3/2,	5/2,	1, 2, 3,	0			

I= 1/2 : ¹H, ³He, ¹³C, ¹⁵N, ²⁹Si, ³¹P, ¹⁰⁹Ag, ¹²⁹Xe, ¹⁹⁵Pt, ... 3/2 : ⁷Li, ⁹Be, ¹³¹Xe,

1 : 14 N, D(2 H),...

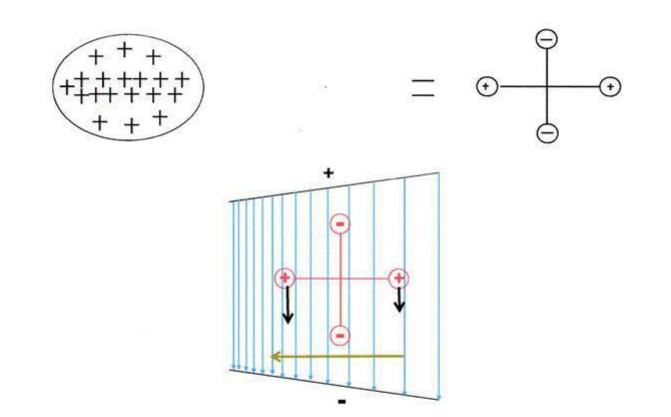

5/2 : ¹⁷O, ²⁷Al,

 $\vec{I} = \text{dimensionless vector}$ $\mathcal{M} = \hbar \vec{I} = \text{angular momentum}$ $\vec{\mu} = \text{magnetic moment} = \gamma \hbar \vec{I}$ $\gamma = \text{gyromagnetic ratio}$

The Periodic Table of the Elements

1 H Hydrogen 1.00794		0		1	= 1/2												2 He Helium 4.003
3 Li	4 Be	Quadrupolar									5 B	6 C	7 N	8 0	9 F	10 Ne	
Lithium 6,941	Beryllium 9.012182	Guadiupolai									Boran 10.811	Carbon 12.0107	Nimogen 14.00674	Oxygen 15,9994	Fluorine 18,9984032	Neon 20,1797	
11	12										13	14	15	16	17	18	
Na	Mg											Al	Si	Р	Sulfur	Cl	Ar
Sodium 22.989770	Magnesium 24.3050											Aluminum 26.981538	Silicon 28.0855	Phosphorus 30.973761	32.066	35.4527	Argon 39,948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium 39.0983	Calcium 40.078	Scandium 44.955910	Titanium 47.867	Vanadium 50.9415	Chromium 51.9961	Manganese 54,938049	Iron 55.845	Cobalt 58.933200	Nickel 58.6934	Copper 63.546	Zinc 65.39	Gallium 69.723	Germanium 72.61	Arsenic 74.92160	Selenium 78.96	Bromine 79,904	Krypton 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Rubidium 85,4678	Strontium 87.62	Yarnum 88,90585	Zirconium 91.224	Niobium 92,90638	Molybdenum 95,94	Technetium (98)	Ruthenium 101.07	Rhodium 102,90550	Palladium 106.42	Silver 107,8682	Cadmium 112.411	Indium 114,818	Tin 118,710	Antimony 121.760	Tellurium 127.60	Iodine 126,90447	Xenon (31.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Cesium 132,90545	Barium 137.327	Lanthanum 138,9055	Hafnium 178,49	Tantalum 180,9479	Tungsten 183,84	Rhenium 186.207	Osmium 190,23	Iridium 192,217	Platinum 195.078	Gold 196,96655	Moreary 200.59	Thallium 204,3833	Lead 207.2	Bismuth 208,98038	Polonium (209)	Astatine (210)	Radon (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114	200000000	1.4.7.7	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt		(10.077.00-0	in accordences	101.1142/0101	-1020-1039-1474-157				
Francium (223)	Radium (226)	Actinium (227)	Ratherfordium (261)	Dubnium (262)	Seaborgium (263)	Bohrium (262)	Hassium (265)	Meitnerium (266)	(269)	(272)	(277)						
(440)	(22.0)	(22.1)	(201)	(202)	(200)	(202)	(200)	(4.00)	1-011	(2/2)	(277)				-		

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmum	Erbium	Thulium	Vtterbaum.	Lutetium
140.116	140.90765	144.24	(145)	150.36	151.964	157.25	158.92534	162.50	164.93032	167.26	168.93421	173.04	174.967
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
232.0381	231.03588	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)



Nuclear electric quadrupole moment: non-spherical distribution of nuclear charge A B

I = 0 I = 1/2 I ≥ 1 ; eQ > 0 I ≥ 1 ; eQ < 0

eQ ~ 10⁻²⁵ to 10⁻³⁰ m²

The physical picture

This quadrupole moment interacts with local electric field gradients created by the bonding environment of the nuclei. -> probe of local symmetry

Zeeman interaction

Zeeman interaction : \hat{H}_Z

The energy of a magnetic dipole μ in a magnetic field with induction B_0 along the axis OZ is

$$E = -\mu \cdot B_0 = -\gamma h B_0 \cdot I = -\gamma h B_0 I_z$$

The corresponding Hamiltonian operator is of the same form:

 $\hat{H}_Z = -\gamma \hbar B_0 \hat{I}_Z$

Being proportional to \hat{I}_Z , it allows 2I + I eigenvalues. There are therefore 2I + I accessible energy levels

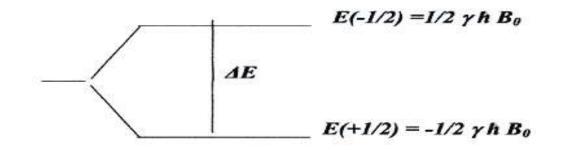
$$E_m = -\gamma \hbar B_0 m$$
 (m = -I,-I+1, ..., I)

The energy gap ΔE between two consecutive levels being constant, proportional to B_0 ,

$$\Delta E = \gamma \hbar B_0$$

we observe a single-line spectrum at frequency v

$$hv = \Delta E = \gamma \hbar B_{\theta}$$
$$\omega_0 = \gamma B_{\theta}$$


where ω_0 is the angular frequency.

SPIN 1/2

$$\vec{\mu} = \gamma \hbar \vec{I}$$

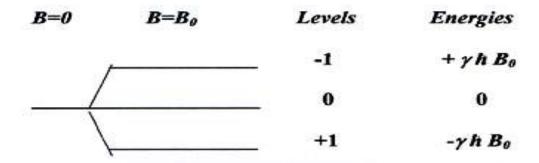
$$E = -\vec{\mu} \cdot \vec{B_0} = -\gamma \hbar \vec{B_0} \cdot \vec{I} = -\gamma \hbar B_0 I_z$$

$$E_m = -\gamma \hbar B_0 m$$
 (m = -1/2, +1/2))

 $\Delta E = h v_0 = \gamma h B_0$

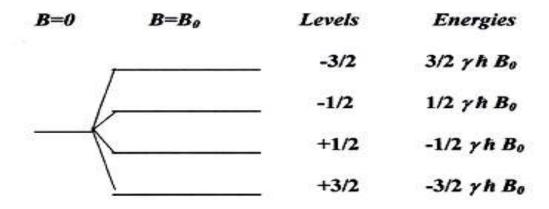
 $2\pi v_0 = \omega_0 = \gamma B_0$

SPIN > 1/2

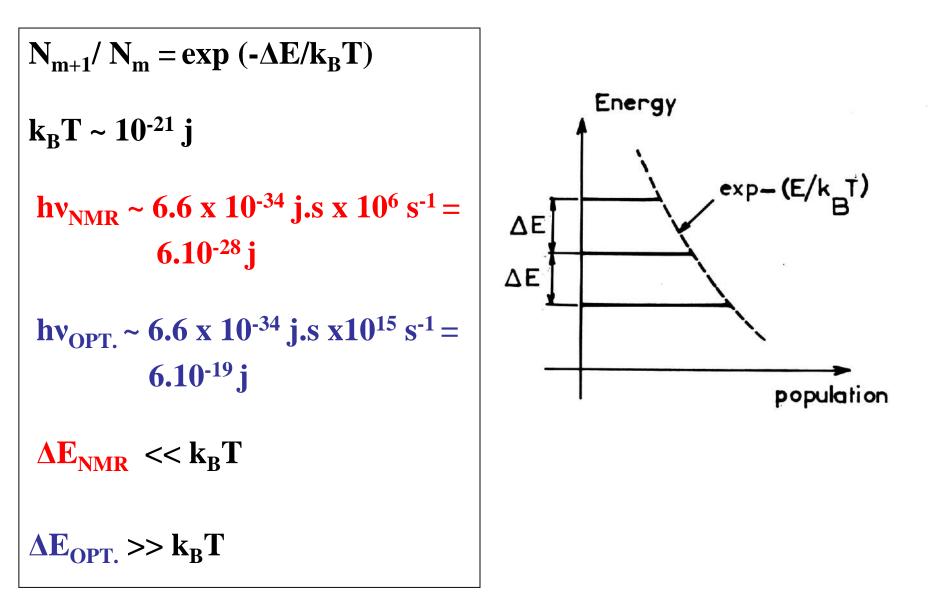

 $I \rightarrow 2I + 1 \text{ energy levels} \rightarrow 2I \text{ intervals}$ $\Delta E = (2I \gamma h B_0) / 2I = \gamma h B_0 = h v_0$ $2\pi v_0 = \omega_0 = \gamma B_0$

Examples spin I> 1/2

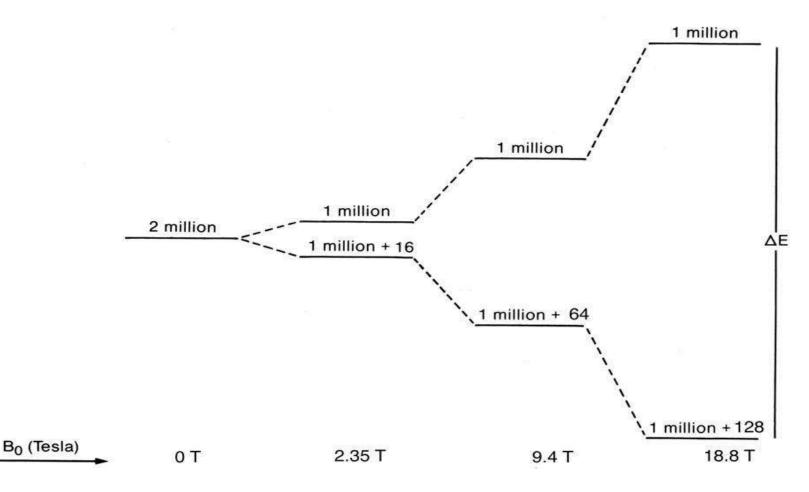
 $\vec{M} = \hbar \vec{I} = angular momentum$

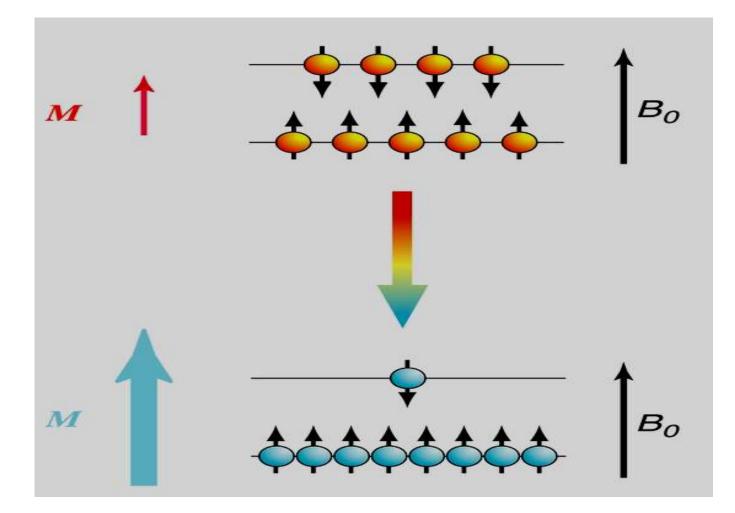

 $M_Z = I h$, (I-1) h,...., (I-n) h,...., -I h

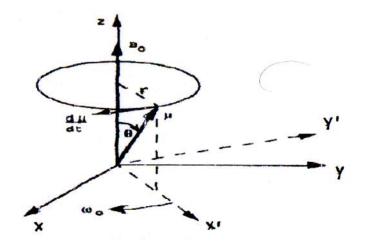
Spin I = 1 (D, ¹⁴N, ...)



The three equidistant Zeeman energy levels of an isolated 1 spin


Spin I = 3/2 (7Li, ¹³¹Xe, ...)


Populations of levels


Distribution of the spins ½ assuming that we have two millions of spins. Of course generally there are more numerous

Normal polarization

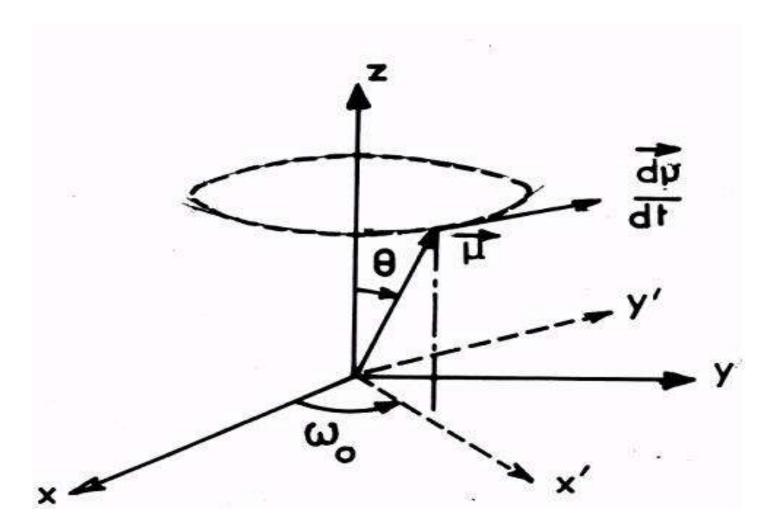
Hyperpolarization

The torque exerted on a magnetic moment $\vec{\mu}$ by a magnetic field is

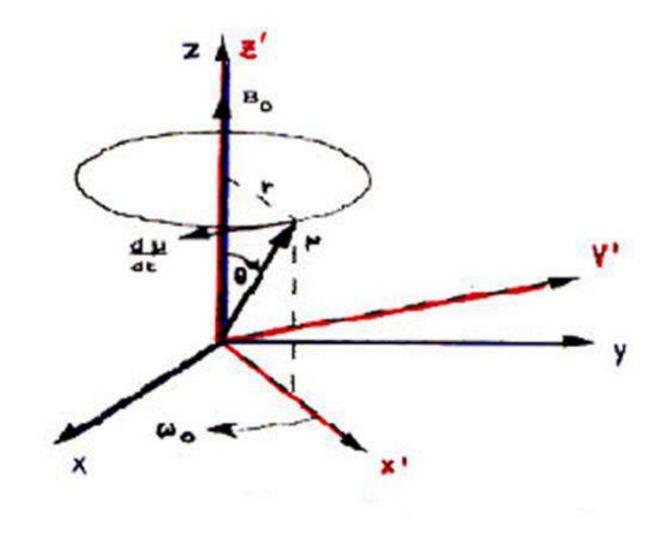
 $\vec{C} = \mu \wedge \vec{B}_0$

It equals the rate of change of angular momentum

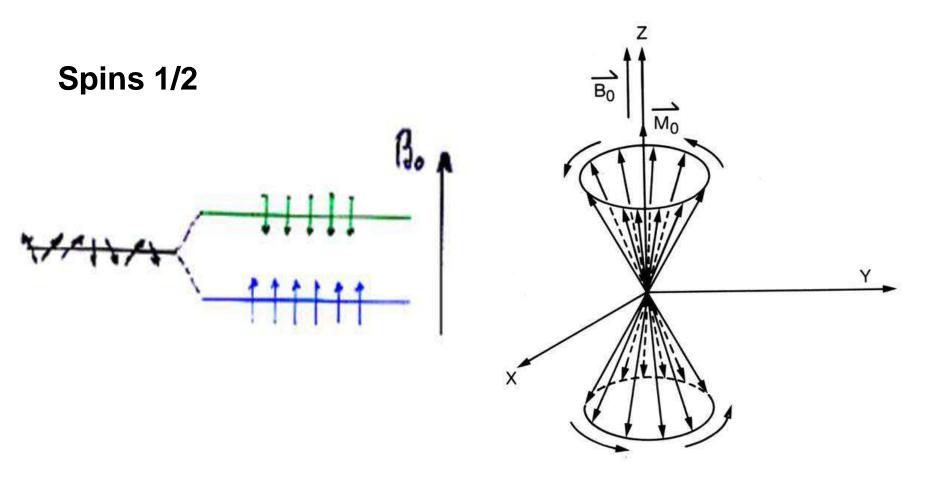
 $\hat{\mathbf{f}}_{1} \vec{\mathbf{d}}_{1} dt = \vec{\mathbf{C}} = \vec{\mu} \wedge \vec{\mathbf{B}}_{0}$ $\vec{\mathbf{d}}_{1} dt = \vec{\mathbf{h}} \gamma \vec{\mathbf{d}}_{1} dt = \gamma \vec{\mu} \wedge \vec{\mathbf{B}}_{0}$

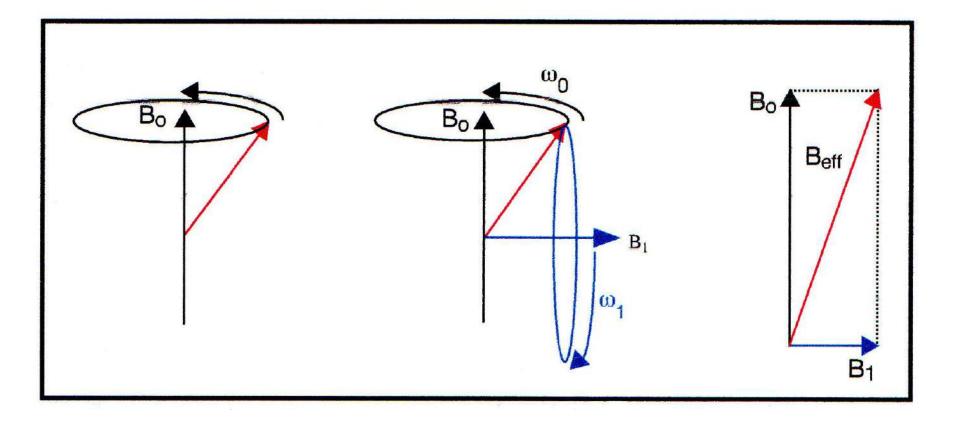

 \Rightarrow Precession of $\overrightarrow{\mu}$ around \mathbf{B}_0

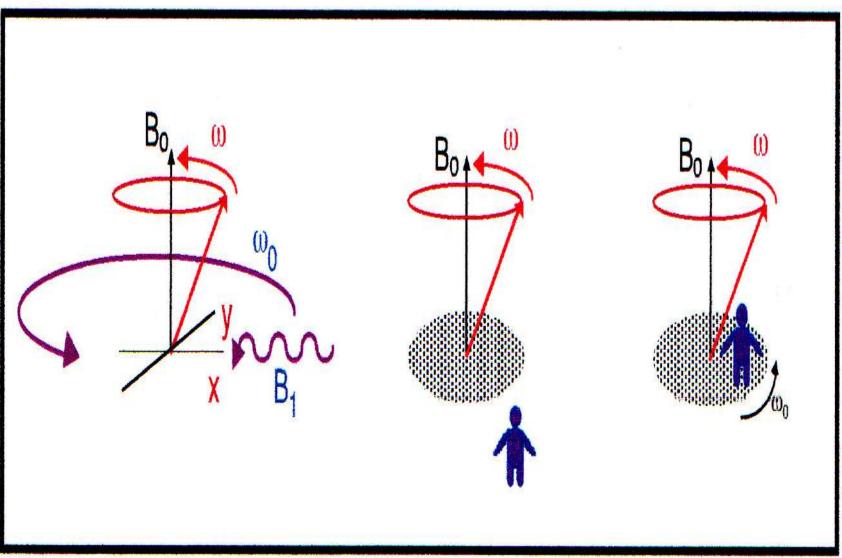
Period of precession:


 $T_0 = 2\pi r / d\mu/dt$ with $r = \mu \sin \theta$ and $d\mu/dt = \gamma \mu B_0 \sin \theta$

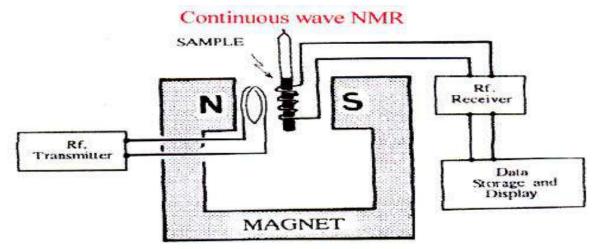
 $\Rightarrow T_0 = 2\pi I \gamma B_0 \implies \omega_0 = \gamma B_0 \text{ Larmor frequency}$


Precession of the magnetic moment around the magnetic field Bo


Laboratory frame and rotating frame


Orientation and precession of nuclear spins (I = 1/2) at thermal equilibrium in a stationary magnetic field Bo that defines the z-axis. In reality, the angle between the vectors and the z-axis is much smaller than is shown for illustrative purposes

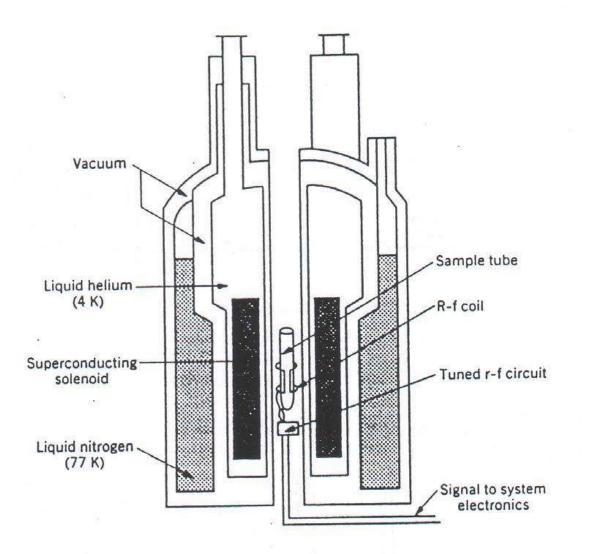
During the NMR experiment we use B₀ and B₁



Laboratory and rotating frames

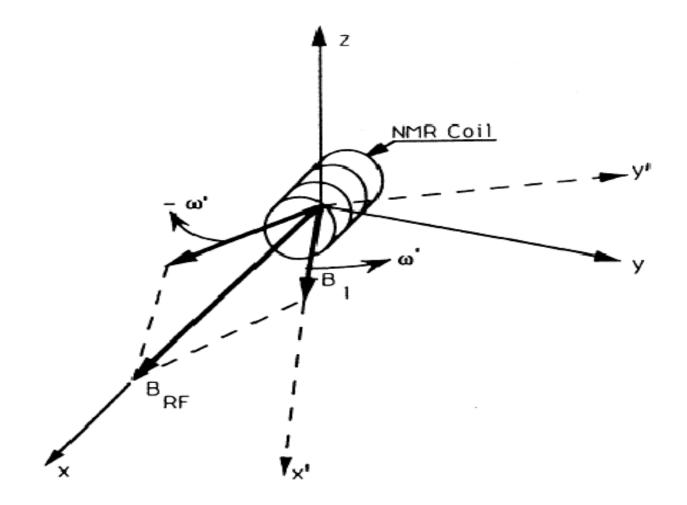
• Spectrometer

Electro- magnet up to 100 MhZ for protons (2.34 T)


Schematic diagram indicating the basic components of an NMR spectrometer

 $\omega_0 = \gamma B_0$. Generally ω_0 is fixed and we scan B_0 .

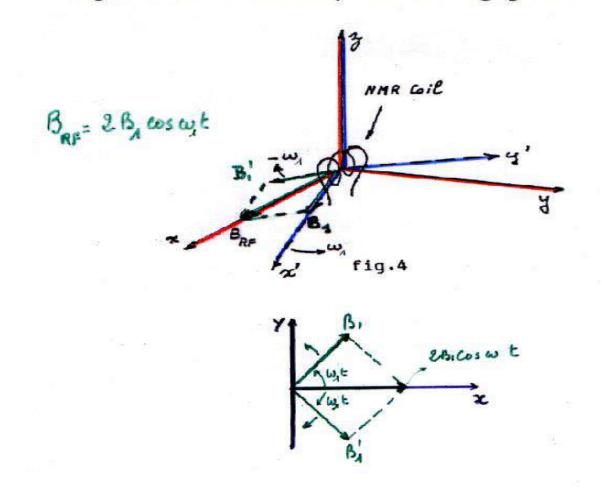
Signal intensity proportional to N $_{(+1/2)}$ - N $_{(-1/2)}$ (very small). For example for protons, 300K, B₀= 0,95 tesla, N $_{(+1/2)}/N$ $_{(-1/2)}$ =1.0000066.


Phenomenon of saturation due to a strong absorption: N $_{(+1/2)}$ - N $_{(-1/2)}$ \Rightarrow S =0

Superconducting magnet now up to about 23 teslas

NMR experiment

Decomposition of the radiofrequency field in two components with two opposite angular velocity.

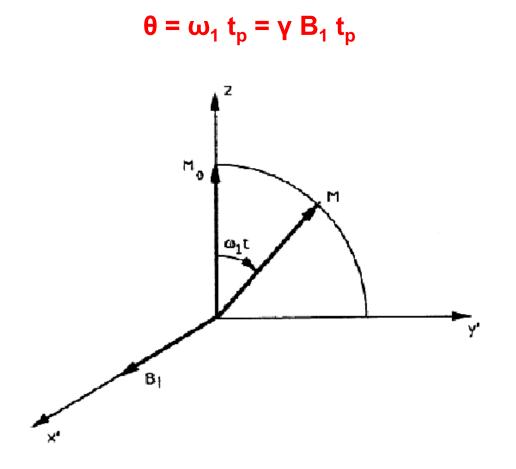


Interaction with the radiofrequency Field BRF

A radiofrequency field \overrightarrow{B}_{RF} is applied $\perp B_0$ along OX of the lab. Frame.

 $B_{RF} = 2 B_1 \cos \omega_1 t$

This rf field can be split into two rotating components of fixed amplitude and with angular velocities of $\pm \omega'$. The component with the velocity $-\omega'$ has a negligible effect.



Pulsed NMR

A high power radiofrequency field B_1 is applied to the sample for a short time (about microsecond). During this pulse the magnetization rotates in the rotating frame according to the equation

 $ω_1 = γ B_1$

at a rate proportional to the RF intensity

Pulsed NMR

This method does not give the NMR signal directly. A high power B_{RF} is applied to the sample for about one microsecond. During this pulse the magnetization rotates in the rotating frame according to equation

 $\omega_1 = \gamma \mathbf{B}_1$

at a rate proportional to the RF intensity.

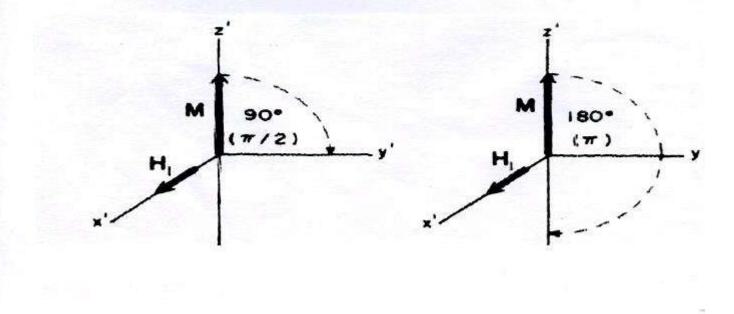
$$\theta = \omega_1 t_p = \gamma B_1 t_p$$

We will use very often $\theta = \pi/2$ and $\theta = \pi$

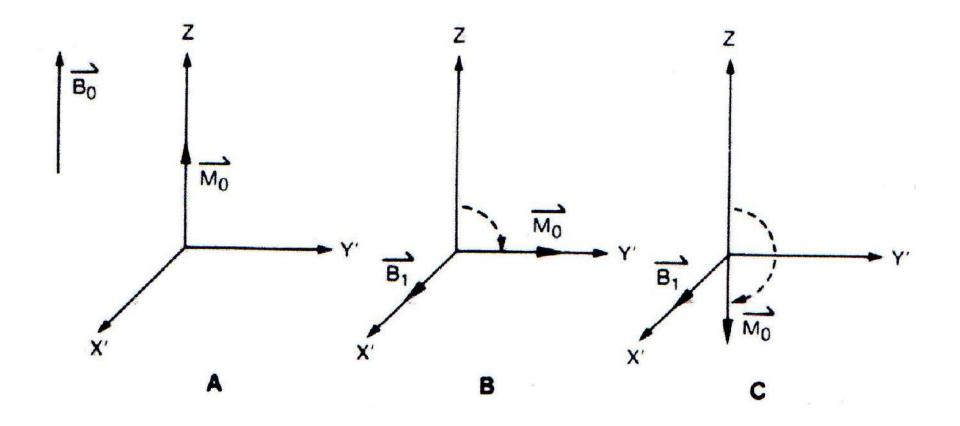
If $\theta = \pi/2$, M_0^+ will be directed along Y'. It then induces a current in the receiver coil which is in the XOY plane. This current is at the origin of the NMR signal. After this period the system evolves under the effect of relaxation.

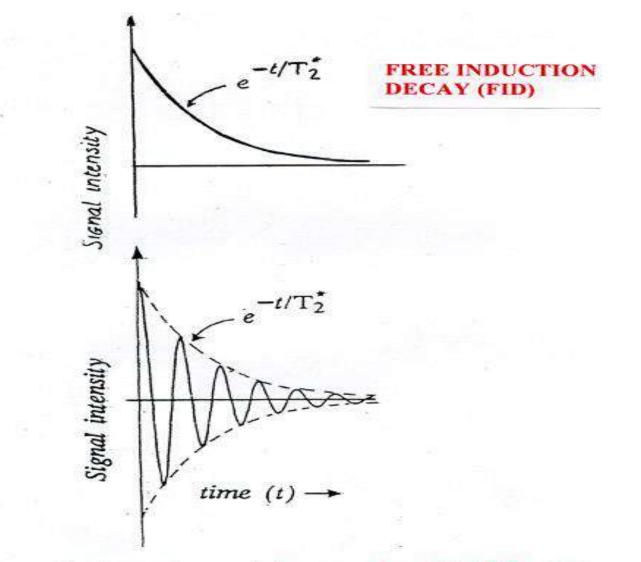
Pulsed NMR

This method does not give the NMR signal directly. A high power B_{RF} is applied to the sample for about one microsecond. During this pulse the magnetization rotates in the rotating frame according to equation

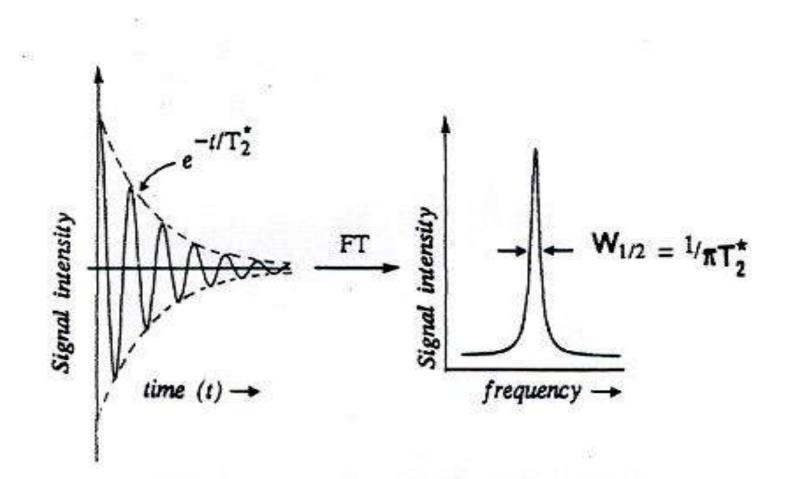

 $\omega_1 = \gamma B_1$

at a rate proportional to the RF intensity.

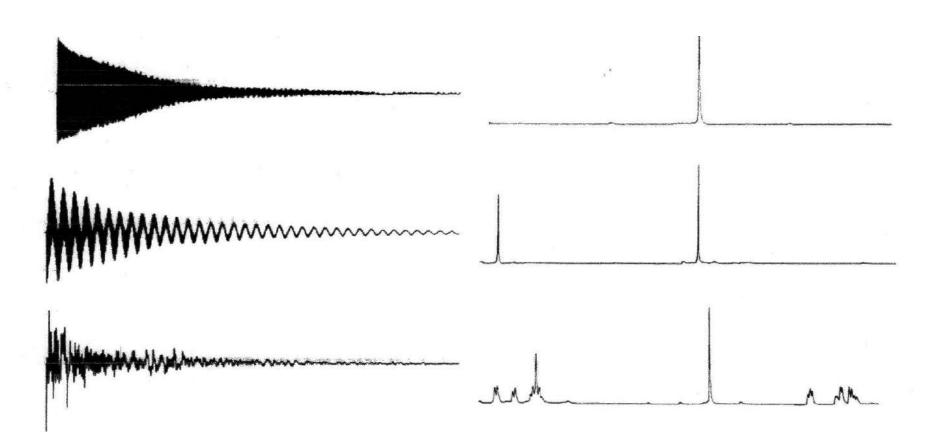

 $\theta = \omega_1 t_p = \gamma B_1 t_p$


We will use very often $\theta = \pi/2$ and $\theta = \pi$

If $\theta = \pi/2$, M_0^+ will be directed along Y'. It then induces a current in the receiver coil which is in the XOY plane. This current is at the origin of the NMR signal. After this period the system evolves under the effect of relaxation.



Pulses $\pi/2$ and π



Generally the system contains several nuclei of the same species that differ in Larmor frequency because of various perturbations (chemical shifts, spin-spin coupling, etc.). Then they are precessing at a frequency different from that of the rotating frame, and interference effects can occur (beatings).

Fourier transformation of an FID which decays exponentially with a time constant of T_2^* s gives rise to a Lorentzian lineshape whose width at half-height is $1/\pi T_2^*$ Hz

Free induction decay (FID) and Fourier transform

