

NMR of Solids

J. Fraissard

University P. and M. Curie, Paris ESPCI Laboratory « Physique et Etude de Matériaux »

Interactions of nuclear spins in a solid

 $E_{RF} = RF$ field

- E_{CS}= Chemical shift
- $E_J = JJ$ coupling
- E_D = Dipolar interactions
- E_Q = Quadrupolar coupling
- E_{ij} = Unpaired electrons

E_Z >> other interactions

Very often some effects are masked by the others

For example $E_D >> E_J$

- $E_X = K$ (spin factor) [space factor f(θ)]
- $\theta\,$ = angle between an axis of the system and B_0

Chemical Shift δ

1 Bo

$$\begin{aligned}
\omega = \gamma B \\
\text{Janople: } 2\Pi U_s = \gamma B_0 (1 - G_s) \\
\text{Selerence: } 2\Pi U_r = \gamma B_0 (4 - G_r) \\
SN = U_r - U_s = \frac{\gamma B_0}{2\Pi} (J_s - J_r) \\
\overline{J} = \frac{\gamma B_0 J_{\Pi}}{\gamma B_0 J_{\Pi}} (J_s - J_r) \\
\overline{J} = \frac{\gamma B_0 J_{\Pi}}{\gamma B_0 J_{\Pi}} (A - J_r) \\
\end{aligned}$$

Spin-spin coupling J

2 h] +1

Ethyl acetate

Nuclear Electric Quadrupole Moment

A B C D

I = 0 I = 1/2 $I \ge 1$; eQ > 0 $I \ge 1$; eQ < 0

Dipolar Magnetic Interaction between nuclei

DMI = CONSTANT . $(1-3 \cos^2 \theta) \cdot r^{-3}$

For powder samples the interactions must be summer up over all directions.

Gaussian (solid line) and lorentzian (broken lline) of curves of solids

Spectrum for a two spins magnetic configurations - - - - theoretical; _____ real

Dipolar Magnetic Interaction between two ¹H nuclei

DMI = CONSTANT , $(1-3 \cos^2 \theta)$, r^{-3}

For powder samples the interactions must be summer up over all directions.

DMI = 0 if $\cos \theta = 1/\sqrt{3}$

 $\theta = 54^{\circ} 44'$

 $a^{2} + (a\sqrt{3})^{2} = (a\sqrt{2})^{2} + 2a.(a\sqrt{3})\cos\gamma$ $\cos \gamma = 1/\sqrt{3}$ $\nu = 54^{\circ}44'$

Magic angle spinning (MAS)

SPINNER

To obtain a HR spectrum, the rotation of the sample, $v_{r,}$ must be faster than the line width, Δv , without rotation.

Accuracy of the angle

The angle between the diagonal of the cube and the side is = the magic angle

Pulse sequences

¹⁹ F NMR. Application of the Wahuha sequence to perfluorocyclohexane C₆F₁₂ at 200 K

4.4'-dimethylbenzophenol A: MREV-8; B: MREV-8 + MAS; C: BR24 + MAS

Maleic acid at 60 and 270 MHz Influence of hydrogen bond HO₂CHC=CHCO₂H

Poly phenylene oxide

Poly phenylene oxide and blend with polystyrene

OH groups in zeolites Hydrogen bonds: δ (OH) and ν (OH)

IR: Δv in cm⁻¹ against hydrogen bond

The relation between OH frequency shift and O - - - - O distance during hydrogen-bonding interaction

Influence of hydrogen bonds

Experimental chemical shift δ_H of isolated (black) and interacting (red area) groups in zeolites

Spins with low γ

Polarization transfer from abundant spins I (high γ_1) to the low concentration spins S (low γ_S)

-1-1-1-1-1-1-1-

For spins ¹/₂, magnetization :

SE, = Y, 80

magnetization : $M = (N/4k_BT) \gamma h B_0$

Signal/ noise ratio: \propto (I+1) N $\gamma^{5/2}$

A N

For the same B_0 , ΔN_1 and ΔN_S are proportional to γ_1 and γ_S .

 $\Delta N_1 / \Delta N_s = \gamma_1 / \gamma_s$

Population 1 (abundant spins)

After a $\pi/2$ pulse along x' at frequency ω_{0I} the abundant spin magnetization M_I lies along y'.

Immediately after a second $\pi/2$ pulse along y' the I spins rotate around y'. The resultant magnetization M_I is "spin-locked" on the axis.

Due to another rf field $B_{1,S}$ along X', individual magnetic moment μ_S turns around X' with a frequency $\omega_{1,S}=\gamma_S B_{1,S}$

Hartmann-Hahn condition

I and S have the oscillating components which may have the same time dependence if

 $\omega_{1I} = \omega_{1S}$ $\gamma_{S} \mathbf{B}_{1S} = \gamma_{I} \mathbf{B}_{1I}$

¹³C NMR of Pyridine
 a: liquid (left)and in H₂SO₄(right)
 b and c:adsorbed on NaY(left) and HY(right)

 δ ⁽²⁹Si) for silicates Q_n

Zeolite A

Zeolite Y (Faujasite)

δ (²⁹Si) in units Q₄(n AI)

Variation of ²⁹Si-NMR with Si/AI ratio of faujasite

Dealumination of Y zeolite

Determination of the ratio Si/Al

 $Si / Al = \sum_{n=0}^{4} I_{Si(nAl)} / \sum_{n=0}^{4} \frac{n}{4} I_{Si(nAl)}$

Variation of δ (²⁹Si) against distance TT

ZSM5. A: static; B: MAS; C: simulation

²⁹Si-MAS-NMR of silicalite. Influence of p-xylene concentration.Transformation of monoclinique into orthorhombique symetry

δ(²⁹Si) during the synthesis of ZSM5 crystallinity: a) 0% Si/Al=1.8
 b) 45% Si/Al=5; c) 100%

δ (²⁷Al) of AlO_n

reference [AI(H2O)₆] ³⁺

Variation of $\delta^{27}AI$ versus AI-O-Si angle

FIG. 3.36 – Variation de $\delta(^{27}Al)$ avec l'angle Al-O-Si.

NMR spectroscopy in cement science

Solid-state NMR spectroscopy is extensively utilized (²⁹Si, ²⁷Al, ¹H):
 « Application of NMR spectroscopy to cement science » Gordon and Breach, 1994
 « NMR spectroscopy of cement based materials » Springer 1998

CaO.SiO2.Al2O3.Fe2O3.SO3.Na2O.MgO.CO2.H2O

43Ca, 25Mg, 33S

MAYA Blue: Palygorskyte clay + indigo

Palygorskite clay

_____b _____

27AI MAS NMR spectra of fresh (a) and aged (b) Maya Blue-like pigments.

Chemical shift anisotropy

Schematic representation of the ¹³C NMR absorption of a carbonyl functionality

A- single crystal in two different orientations/B₀

- B- In a polycrystalline sample where there are contributions from the random distribution of orientations.
- C- In solution

Chemical shift anisotropy

MAS removes all solid-state interactions. Multi-pulse sequence does not remove the chemical shift anisotropy.

Asymmetric shift anisotropy

 $\sigma_{iso} = \sigma_{11} + \sigma_{22} + \sigma_{33}$

Axially shift anisotropy $\sigma_{11} = \sigma_{22} = \sigma_{\perp} \sigma_{33} = \sigma_{\Pi}$

13C spectra of polycrystalline compounds containing carbonyl groups. Low-field: CO; high field: CH3

Framework viewed along [100]

10-ring viewed along [100]

Anisotropy of chemical shift

Influence of the rotation on the sidebands

a) Static; b) low spinning;c) fast spinning side bands

End of the second part