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I = dimensionless vector

M=hT= angular momentum

; = magnetic moment = Tk?

Y = gyromagnetic ratio
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Nuclear electric quadrupole moment:
non-spherical distribution of nuclear charge
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The physical picture
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This quadrupole moment interacts with local electric field
gradients created by the bonding environment of the nuclei.
-> probe of local symmetry



e Zeeman Interaction



Zeeman interaction ; Hy

The energy of a magnetic dipole g in a magnetic field with inductior
By along the axis OZ is ,

E=-ﬂ. Bp=- J’ley. I=- j’hBﬂIz
The corresponding Hamiltonian operator is of the same form:

Ez --Tﬁ Bﬂ fz

Being proportional to fz, it allows 27 + [ eigenvalues. There art
therefore 27 + I accessible energy levels

Em = '}(ﬂ Bﬂ m (Hf = -L-I+Ij s ﬂ

The energy gap AE between two consecutive levels being constant,
propottional to B,

AE=yh B,
we observe a single-line spectrum at frequency v
hv=AE=yhB,
o=y By

where g is the angular frequency.



SPIN
u=yhI
E=-y.B,=-yhB,.T=- yh B, I,
E,.=-vh Bym m=-1/2, +1/2))

E-I2) =12 yh By

AE

\ E(+1/2) = -1/2 yh B,

AE=hveg=yh B,

2w vg=mg= v By
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Examples spin 1> ‘4
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M =k I = angular mormenium
Me=1h, (I-1) A,......, ( I-n) R,......, -T R
Spin 1 =1 (D, "N, ...)
B=0 B=RB, Levels FEnergies
= -1 + vh By
/ 0 0
\ +1 -vh By
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The three equidistant Zeeman energy levels of an isolated 1 spin

Spin I=3/2 (Li, "'Xe, ...)

B=0 B=B, Levels Energies
-3/2 32 yh By
-1/2 1/2 ¥k B,
+1/2 -1/2 yh By

+3/2 -3/2 yh By




Populations of levels

Nis1/ N =exp (-AE/kgT)
kBT ~ 10_21 j

hvywve ~ 6.6 X 1034 j.s x 108 s1=
6.10%8

hvopr ~ 6.6 X 1034 j.s X108 51 =
6.1019]

AEywr << KkgT

AEqpr >> KgT
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Distribution of the spins Y2 assuming that we have
two millions of spins. Of course generally there are

more numerous
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Normal polarization

Hyperpolarization



The torque exerted on a magnetic moment i by a magnetzc
field is

C o l..l A Bo
It equals the rate of change of angular momentum

ﬁdlldt*C*uABa
- —_— — i
di/dt=h ydl/dt =yu A B,
—_—
= Precession of p around B,

Period of precession:

To=2mr/dp/dt with r= u sin® and dw/dt=vy p By sin ©

= To = 2m /¥yBg = wp = yvBy Larmor frequency



Precession of the magnetic moment around the
magnetic field Bo




Laboratory frame and rotating frame




Orientation and precession of nuclear spins (I = 1/2) at thermal equilibrium in
a stationary magnetic field Bo that defines the z-axis. In reality, the angle
between the vectors and the z-axis is much smaller than is shown for
illustrative purposes
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During the NMR experiment we use Bo and B1




Laboratory and rotating frames




e Spectrometer



Electro- magnet up to 100 MhZ for protons (2.34 T)

Continuous wave NMR
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T absorption U relaxation
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Signal intensity proportional to N (.5, - N (., (very small). For
example for protons, 300K, Bg= 0,95 tesla, N ¢, 2/ N (2= 1.0000066.

I

Phenomenon of saturation due to a strong absorption: N iz, - N (12
= S=0



Superconducting magnet
now up to about 23 teslas
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* NMR experiment



Decomposition of the radiofrequency field in
two components with two opposite angular
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Interaction with the radiofrequency Field B—’RF

A radiofrequency field By is applied L By along OX of
the lab. Frame.
Brp =2 B cos @,

This rf field can be split into two rotating components of
fixed amplitude and with angular velocities of + @ ’. The
component with the velocity -o " has a negligible effect.




Pulsed NMR

A high power radiofrequency field B, is applied to the sample for a short time (about
microsecond). During this pulse the magnetization rotates in the rotating frame according
to the equation

w,=yB,;

at a rate proportional to the RF intensity

O=w,t,=yB,




Pulsed NMR

This method does not give the NMR signal directly. A high
power By is applied to the sample for about one microsecond.
During this pulse the magnetization rotates in the rotating
frame according to equation

oy = vyB,
at a rate proportional to the BF intensity.

0= L3 F tpz TB] tl"
We will use very often O=n/2 and O=s
If 8=n/2, Mg will be directed along Y’ . It then induces a
current in the receiver coil which is in the XO0% plane. This

current is at the origin of the NMR signal. After this period
the system evolves under the effect of relaxation.




Pulsed NMR

This method does not give the NMR signal directly. A high
power Bpgy is applied to the sample for about one microsecond.
During this pulse the magnetization rotates in the rotating
frame according to equation

;= 'YB]
at a rate proportional to the RF intensity.

0= L O 1) tp‘_‘ 'YB] tp
We will use very often O=n/2 and O==n
If O=n/2, Mg will be directed along Y’. It then induces a
current in the receiver coil which is in the X0Y plane. This

current is at the origin of the NMR signal. After this period
the system evolves under the effect of relaxation.




Pulses 7T/2 and TT

Mo
Q\‘ voa
B,
X' X
A B




—&/T, FREE INDUCTION
P e DECAY (FID)
>
A3
bt}
=
=
=
&
)
-
B 748 B
\\ f € =
N

= N~
g Y e
= o
E: 2
So \J %
(5% e

7 time (t) —

;

Generally the system contains several nuclei of the same
species that differ in Larmor frequency because of various
perturbations ( chemical shifts, spin-spin coupling, etc.).
Then they are precessing at a frequency different from

that of the rotating frame, and interference effects can
occur (beatings).
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Fourier transformation of an FID which decays exponentially with a time
constant of T s gives rise to a Lorentzian lineshape whose width at half-height is

1/xT3 Hz



Free induction decay (FID) and Fourier transform




